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Thermal elimination of isobutene and C 0 2  from N-tert-butoxycarbonylaziridino[2’,3’: 1,21[60lfullerene 4 provides a 
clean and efficient route to aziridino[2’,3’: 1,21[60lfullerene 1, an isolable and stable solid. 

Studies into the chemical reactivity of fullerenes, particularly 
[60]fullerene have grown rapidly in the past two years 
following the isolation of C600 and its identification as an 
epoxide which is formed across the 6,6-central bond of a 
pyracyclene unit.l.2 Chemically, the oxygen is not firmly bound 
and like many other derivatives, C600 shows a tendency to 
revert to [60]fullerene upon heating (toluene, 110 “C, 24 h).2 
We now report the preparation of the nitrogen analogue, 
C60NHt 1, which in sharp contrast to C600, is a thermally stable 
derivative which can be heated to 147 “C (1,1,2,2-tetrachloro- 
ethane, TCE) without change. Thus, the synthesis of bronze- 
coloured 1 is conveniently achieved by a two-step process as 
outlined in Scheme 1. 

The first step involved dropwise addition to a solution of 
[60]fullerene in boiling TCE of tert-butylazidoformate 2,3 
which is stored as a 3 mol dm-3 stock solution in TCE thus 
minimising the intrinsic danger of azides.4 The outcome was 
elimination of nitrogen, and within minutes, the formation of N -  
tert-butoxycarbonylaziridino[2’,3’ : 1,2] [60]fullerene 4,$ by in 
situ trapping of the intermediate nitrene (But02CN:) with 
[60]fullerene.5 The same result could also be achieved, albeit 
under much milder conditions, by base-induced a-elimination6 
of 0-4-nitrophenylsulfonyl-tert-butylhydroxamic acid 39 in the 
presence of [60]fullerene under phase-transfer conditions at 
room temperature? By both these procedures, compound 4 is 
obtained in 5540% yield, and is easily purified by flash 
chromatography on silica (n-hexane-toluene). 

In the second step, compound 4 was heated in TCE (5 h), 
whence elimination of isobutene and C02 occurred to form the 
title compound 1 in 70% yield. No evidence was found for a 
fulleren&ziridine-oxazole- 
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Scheme 1 Reagents and conditions: i, TCE, 147 “C; ii, NaHC03, BzEt3NC1, 
H20-TCE-CH2C12, 20 ‘C; iii, TCE, 147 “C, 5 h 

fullerene) rearrangement previously observed for this class of 
compounds.4~5~6 Pertinently, no molecular ion at 835 
(Cs5HgNo2 requires 835) was observed in the FAB mass 
spectrum of 4, but ions at 780.00969 [(M+ + l),  C61H2N02 
requires 780.008551 and 736.01497 [(M+ + l),  C60H2N requires 
736.01 8721 were measured and correspond to the sequential 
loss of isobutene and C02 from 4. 

The structural assignment of 1 rests on spectroscopic 
arguments and attempts are being made to produce a highly 
crystalline derivative of 1 for X-ray crystallographic analysis. 
FAB-MS analysis of 1 showed a prominent molecular ion at 736 
[(M+ + l),  736.01199, C60NH2 requires 736.018721. The 13C 
NMR spectrum is consistent for a molecule with CZ,, symmetry 
incorporating an aziridine ring at a 6,6-junction of [60]fullerene 
with fast pyramidal inversion at nitrogen.8 Hence, there are 16 
lines in the fullerene region 6 147 and 138 (13 lines of intensity 
4, 3 lines of intensity 2) and a diagnostically significant peak in 
the sp3 region at 6 79.12 (CS2-[2H6]acetone) [6 78.71 (CS2- 
CDCl,)]; lines owing to the carbonyl and tert-butyl carbon 
atoms in the precursor 4 were absent. Similarly, in the 1H NMR 
spectrum of 1 the resonance at 6 1.7 owing to the tert-butyl 
group had disappeared and was replaced by a broad signal 
assignable to NH at 6 5.9, which disappeared on deuteriation. In 
the FT-IR (KBr) spectrum of 1 there was no carbonyl band and 
the main bands were 3272 (w, NH), 1426.6, 1184.0, 1039.8, 
706.3,615.7,566.7,526.3 and497.1 cm-l. It is noteworthy that 
four of these band resemble the principal absorption of 
[60]fullerene (1429.0, 1182.7, 575.9, 526.9).’ The UV-VIS 
spectrum of the faintly pink dichloromethane (CH2C12) solution 
of 1 displayed typical absorptions due to the fullerene skeleton 
at A,,, 258.5 nm (&/dm3 mol-l cm-1 3.05 X lo4), and 326.5 
(9.03 X lO3), together with a shoulder at 410.5 and a weak but 
sharp feature at 423.5 (1.94 X lo3). These data compare 
favourably with those reported for closed 6,6-compounds such 
as C600192 (1,2-epoxy[6O]fullerene) and C61H29 
(1,2-methano[60]fullerene) and so it is concluded that the 
structure of 1 is that of a closed [6,6]-aziridinofullerene. 

We are currently exploring the potential of 1 to undergo ring- 
opening reactions of strained aziridines, thus providing a 
valuable route to 1,2-addition products and their further 
elaboration. We are also investigating the functionalisation of 1, 
and in this connection we wish to report the quantitative 
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Scheme 2 Reagents and conditions: i, 1,2 : 3,4-di-O-isopropylidene-~- 
galactopyranose-6-chloroformate, pyridine, TCE, 22 OC, 2 h 
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formation of D-galactose derivative 5y by direct acylation under 
mild conditions (Scheme 2). 
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142.5 (SC), 141.9 (4C), 141.8 (4C), 141.4 (2C), 141.0 (8C), 139.7 (4C), 
139.1 (4C), 139.0 (4C), 107.9 (quat. C), 106.9 (quat. C), 95.0 (CH), 79.5 
(2C), 69.8 (CH), 69.7 (CH), 69.1 (CH), 65.5 (CH), 64.3 (CH), 24.8 (Me), 
24.7 (Me), 23.5 (Me), 23.2 (Me); FT-IR vmax/cm-l 1750 (s, C=O), 527 
(fullerene). 

Footnotes 
t Herein we describe C6"NH 1 as aziridino[2',3': 1,2][60]fullerene on the 
basis of an IUPAC recommendation that in all compounds in which a 
heterocyclic ring is fused to a fullerene, the latter is to be the 'root' 
compound and will take priority in numbering, but we note that an 
alternative name (also IUPAC recommended) is 1,2-epimino- 
[60]fullerene. 
$ Selected data for 4: IH NMR (250 MHz, CS2-CDC13) 6 1.7 (s, 9H, But); 

144.5 (4C), 144.3 (2C), 144.2 (4C), 143.7 (4C), 143.4 (2C), 142.8 (8C), 
142.7 (8C), 142.5 (2C), 141.9 (4C), 141.8 (4C), 140.7 (4C), 139.6 (4C), 83.3 
(2C), 29.7 (quat. C), 27.6 (But); FT-IR vmaX/cm-1 2960 (m, CH), 1738 (s, 
C=O), 526 (fullerene); UV-VIS h,,,/nm (CH2CI2) 257.5 (&/dm3 mol-1 
cm-1 1.38 x lo5), 324 (3.47 x lO4), 410 (3.30 x lO3), 421 (2.66 X 

3 Selected data for 3: Mp 91-92 "C; FAB-MS (Mf + 1) 319.06227, 
CllHI5N2O7S requires 319.06000; IH NMR (250 MHz, CDC13) 6 1.3 (s, 
9H, But), 7.8 (bs, lH, NH), 8.3 (AB quart., 4H,p-S02C6H4N02); 13C NMR 
(62.5 MHz, CDC13) 6 153.6 (C=O), 151.1, 139.2, 131.1, 123.9,29.6 (quat. 
C), 27.6 (But); FT-IR v,,Jcm-1 3282 (s, NH), 1737 (s, C=O), 1538. 1375 

fi Selected data for 5:  FAB-MS (M+ + 1) 1022.12920, C73H2a07 requires 
1022.12398; 13C NMR (62.5 MHz, CS2-2[H],acetone) 6 153.8 (C=O), 
143.9 (4C), 143.8 (4C), 143.5 (4C), 143.4 (2C), 143.2 (4C), 142.7 (2C), 

13C NMR (62.5 MHz, CDC13) 6 154.4 (C=O), 144.9 (4C), 144.8 (4C), 

103). 

(s, N02), 1346, 1162 (s, S02). 
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